African Trypanosome-Induced Blood-Brain Barrier Dysfunction under Shear Stress May Not Require ERK Activation.
نویسندگان
چکیده
African trypanosomes are tsetse fly transmitted protozoan parasites responsible for human African trypanosomiasis, a disease characterized by a plethora of neurological symptoms and death. How the parasites under microvascular shear stress (SS) flow conditions in the brain cross the blood-brain barrier (BBB) is not known. In vitro studies using static models comprised of human brain microvascular endothelial cells (BMEC) show that BBB activation and crossing by trypanosomes requires the orchestration of parasite cysteine proteases and host calcium-mediated cell signaling. Here, we examine BMEC barrier function and the activation of extracellular signal-regulated kinase (ERK)1/2 and ERK5, mitogen-activated protein kinase family regulators of microvascular permeability, under static and laminar SS flow and in the context of trypanosome infection. Confluent human BMEC were cultured in electric cell-substrate impedance sensing (ECIS) and parallel-plate glass slide chambers. The human BMEC were exposed to 2 or 14 dyn/cm(2) SS in the presence or absence of trypanosomes. Real-time changes in transendothelial electrical resistance (TEER) were monitored and phosphorylation of ERK1/2 and ERK5 analyzed by immunoblot assay. After reaching confluence under static conditions human BMEC TEER was found to rapidly increase when exposed to 2 dyn/cm(2) SS, a condition that mimics SS in brain postcapillary venules. Addition of African trypanosomes caused a rapid drop in human BMEC TEER. Increasing SS to 14 dyn/cm(2), a condition mimicking SS in brain capillaries, led to a transient increase in TEER in both control and infected human BMEC. However, no differences in ERK1/2 and ERK5 activation were found under any condition tested. African trypanosomiasis alters BBB permeability under low shear conditions through an ERK1/2 and ERK5 independent pathway.
منابع مشابه
P 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation
Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...
متن کاملSepsis-associated delirium: the pro and con of C5a blockade
The intimate mechanisms of sepsis-induced delirium are unknown. Among the potential contributing factors, the breakdown of the blood-brain barrier is considered a key determinant of brain dysfunction. The complement activation is paramount to an appropriate activation of the central nervous system during stress. C3a and C5a have been extensively studied and may be involved in sepsis-induced del...
متن کاملDelineating neuroinflammation, parasite CNS invasion, and blood-brain barrier dysfunction in an experimental murine model of human African trypanosomiasis
Although Trypanosoma brucei spp. was first detected by Aldo Castellani in CSF samples taken from sleeping sickness patients over a century ago there is still a great deal of debate surrounding the timing, route and effects of transmigration of the parasite from the blood to the CNS. In this investigation, we have applied contrast-enhance magnetic resonance imaging (MRI) to study the effects of ...
متن کاملInfluence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood-brain barrier dysfunction.
BACKGROUND AND PURPOSE Hyperglycemia is linked to a worse outcome after ischemic stroke. Among the manifestations of brain damage caused by ischemia are blood-brain barrier (BBB) disruption and edema formation. Oxidative stress and matrix metalloproteinase-9 (MMP-9) activation are implicated in BBB dysfunction after ischemia/reperfusion injury. Our present study was designed to clarify the rela...
متن کاملRole of CaM kinase II and ERK activation in thrombin-induced endothelial cell barrier dysfunction.
We have previously shown that thrombin-induced endothelial cell barrier dysfunction involves cytoskeletal rearrangement and contraction, and we have elucidated the important role of endothelial cell myosin light chain kinase and the actin- and myosin-binding protein caldesmon. We evaluated the contribution of calmodulin (CaM) kinase II and extracellular signal-regulated kinase (ERK) activation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The International journal of angiology : official publication of the International College of Angiology, Inc
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2015